Borofloat 33 Float Glass Wafers Great Roughness Specs

University Wafer Silicon Wafers and Semicondcutor Substrates Services
University Silicon Wafer for Production

Get Your BF33 Wafer Quote FAST!


Why Use Borofloat 33 Glass Wafers?

Borofloat 33 (BF33) is often chosen by researchers for its durability and resistance to thermal shock. BF33 including silica has very low coefficients of thermal expansion. BF33 has a much higher melting point, over 1500 degrees fahrenheit, than other glass. BF33's is often used in research lab equipment, as well as optical and lighting applications.

Borfloat 33 will break, but it will not shatter. Thus it's easier to handle when there is an accident.

Borfloat 33 hypoallergenic and doesn't contain any lead.

When you need the following properties BF33 is the right choice!

  • Outstanding Thermal Resistance
  • Exceptional High-Transparency
  • High Chemical Durability
  • Excellent Mechanical Strength

borofloat 33 glass wafers

Custom Borofloat 33 Specification

UniversityWafer, Inc. can customize your wafer specs. 500 micron thickness for 100mm borofloat 33 wafers. Below a client needed BF33 wafers for bonding with the silicon wafer, and the particle size is required to meet the SEMI standard. We provided 400 micron thick glass.

The below glass wafer spec was used for bonding with the silicon wafer, and the particle size is required to meet the SEMI standard.

4 inch glass wafer (BF33) "SCHOTT"
Diameter: 100 mm±0.1,
Thickness: 400±20 μm
Surface Roughness: <1.5nm (Ra)
TTV: <10 μm,
Surface quality 60/40,
Warpage<20 μm,
Chamfered edges, Flat edges

Borofloat 33 (BF33) - Borosilicate Float Glass from SCHOTT

We have a large selection of Borofloat 33 glass wafers in all sizes. We have borofloat as thin as 100 microns. Borofloat 33 is the sanme as Pyrex 7740 and have the same anondic bonding properties. Diameters range from smalled diced pieces up to 12 inches.

BUY ONLINE HERE!

BOROFLOAT® 33 is a high quality boro-silicate glass with outstanding properties for a wide-range of applications.
This unique special float glass is manu-factured by SCHOTT JENAer GLAS using the Microfloat process and the latest technology. This technology also results in a homogeneous material that has an excellent mirror-like surface, a high degree of flatness and an outstanding optical quality.


BOROFLOAT® 33 is a clear and transpar-ent colourless glass. Its excellent trans-mission and its very weak fluorescence intensities over the entire light spectrum make BOROFLOAT® 33 ideal for a wide range of applications in optics, optoelec-tronics, photonics and analytical equip-ment.


Its low thermal expansion, its high thermal shock resistance and its ability to withstand temperatures up to 450°C for long periods make BOROFLOAT® 33 a good choice for applications which call for good temperature stability (e.g. internal panels in pyrolytic self-cleaning ovens and over plates for high-power floodlights).

BOROFLOAT® 33 is highly resistant to attack by water, strong acids, alkalis as well as organic substances. Therefore it is particularly suitable for applications in the chemical industry such as sight glas-ses for reaction vessels and fittings.

Another interesting field of application is in medical and analytical technology. Measurements are hardly influenced by the glass receptacle because the expo-sure to water and acids results only in the leaching out of small amounts of ions from the glass.
BOROFLOAT® 33 has a lower density than soda lime float glass. It makes it possible to construct lightweight lamina-ted glass systems (e.g. bulletproof glass).


BOROFLOAT® 33 has proven itself in many traditional applications and, today, there is an increasing area of usage in new and technically sophisticated special glass applications such as biotechnology, microelectronics and photovoltaics.

Borofloat 33 Applications

• Home Appliances (interior oven doors, fittings in microwave appliances, window panels for fireplaces)
• Environmental engineering, chemical industry (resistant linings and sight glasses for reaction vessels, microfluidic systems)
• Lighting (protective panels for spotlights and high-power floodlights)
• Photovoltaics (glass for solar collectors)
• Precision engineering, optics (optical filters and mirrors etc.)
• Medical technology, biotechnology (slides, biochips, titration plates, DNA sequencers, microfluidic systems)
• Semiconductor engineering, electronics, sensors (wafers, display glass)

Borofloat 33 Chemical Composition

Specification sheet available upon request!

UniversityWafer Borofloat33 and Fused Silica Glass Used for Thin Film Solar Cell Applications

Researchers from the Middle East Technical University and the University of Washington-Seattle have used our 1.1 mm Borofloat33 glass and fused silica glass. These glass items were coated with aluminum by thermal evaporation and annealed at 600 degrees Celsius for 1 hour.

ABSTRACT: Texturing of glass substrate is an alternative novel method for light trapping, which to enhance the absorbed light by way of increasing the diffused transmittance (haze) so that the amount of absorbed light will be increased instead of texturing transparent conductive oxide (TCO). In this study, aluminum induced texturing (AIT) technique is used to texture different type of glasses to see the effect of the chemical composition on surface morphology and optical properties. Improvement in haze values as well as total transmission were obtained in all cases subsequent to texturing. High haze values are obtained by additionally enhancement in total transmission. Surface morphological characterization showed that the composition of glass have direct effect on the textured profile. We speculate that the components of glass other than SiO2 is affecting the density of reaction starting point densities initiation cites on the glass-Al interface. Keywords: Aluminum Induced Texturing (AIT), thin film solar cell, haze...

Research