Chemical Mechanical Polishing (CMP)

University Wafer Silicon Wafers and Semicondcutor Substrates Services
University Silicon Wafer for Production

Chemical Mechanical Polishing (CMP) for Polishing Silicon Wafers

Chemical Mechanical Polishing (Cmp) For Polishing Silicon Wafers


Get Your Quote FAST!


What is Chemical Mechanical Polishing?

Chemical Mechanical Planarization (CMP) is a process that is specifically used to smooth a surface by using chemical and mechanical forces to remove the topography of silicon oxide metal surfaces. Chemical mechanical polishing, also known as C MP, is designed to produce smooth topographies on surfaces deposited on semiconductor substrates. In short, the Cmp process involves holding and turning a thin, flat substrate of semiconductors or materials on a wetted polished surface under controlled chemical, pressure and temperature conditions. There are a number of procedures that can remove topographic topology, but there is no single method to remove it from a silicon oxide, metal or polysilicon surface, except for the application of mechanical force. [Sources: 0, 4, 5]

The chemical-mechanical polishing process is carried out with an Al-2-O-3 based sludge before the desired removal of tungsten material is carried out. This is done by "rinsing" the silicon oxide material with water and a high-pressure, low-temperature solution. [Sources: 1]

At the same time, a polishing solution is provided on the wafer and the polished pad and a polishing sludge is provided. It has a pH of 2.5 and is capable of polishing the substrate contained in this invention with chemical-mechanical means. It also has no pH value for polishing above 2 - 5.0 and an Al-2-O-3-based sludge with a solution for high and low temperature polishing. [Sources: 6]

The polishing slurry has a polishing pH of 1.6 and is capable of chemically and mechanically polishing the substrate contained in this invention. [Sources: 6]

The chemical and mechanical polishing pad provided for in the process of the present invention has a density preferably or preferably of 0.6 g / cm3 measured according to ASTM d1622. The chemical-mechanical polishing pad equipped with the methods of these inventions had its density measured preferably according to AST mD16 22.0.1. [Sources: 6]

The chemical and mechanical polishing pad provided for in the processes of the present invention has a density preferably or preferably of 0.6 g / cm3 measured according to ASTM d2240. The chemical-mechanical polishing wheels provided with the method of these inventions were preferred and measured preferably according to AST mD16 22.0.1. [Sources: 6]

In addition, the metallic CMP slurry is processed under acidic conditions for the purpose of vigorous polishing of tungsten. It also reduces the dispersibility of abrasive particles, which leads to an increase in polishing speed. Meanwhile, conventional metal polishes with C MP sludges have a typical problem, which is illustrated by the polishing performance of these sludges. [Sources: 9]

The slurry contaminants are returned to the semiconductor wafer, which must be further processed and completely removed. This is essentially the case in chemical-mechanical polishing: the semiconductors on the wafers have been completely removed, and a pressure-guided polishing process is created in which the metal slurries are polished. [Sources: 1]

Chemical-mechanical planarization (CMP), often referred to as "wafer polishing," is a standard method for repairing subsurface damage. The mechanical effect of abrasion in combination with chemical modification is called Chemical Mechanical Grading and Polishing, or C MP. Chemical-mechanical polishing: the mechanical effects of abrasions on the dielectric surface and one of the most common methods of removing them. Chemical-mechanical planarship (also called "CMP") was born from the principles of chemical and mechanical polishing, in which a process is used that flattens or "planarizes" the topography of a die surface before structuring. [Sources: 3, 10]

Based on the G-Wmodel, Vasilev proposed a chemical-mechanical polishing model based on the density of the chip scales. The model used a combination of simulated scoring depth, scoring speed and scoring depth to simulate the mechanical effects of abrasion on the surface of a silicon wafer and the chemical properties of the die. [Sources: 2, 8]

Wenjie Zhai and other researchers [18] have used the Molecular Dynamics Method (MD) to establish chemical-mechanical polishing (CMP), in which a single diamond abrasive grain is etched from an atom-per-silicon carbide surface into the atoms of a silicon carbide surface. Grooves are placed on the polished surface, with the surface polished at a depth of 1.5 micrometers (0.1 mm) at the base of each groove and at an angle of 2 mm between the polished surface and the surface. By touching the polyurethane polishing cushion with the planarization of the wafer surfaces, the semiconductor wafers are subjected to an orbital motion associated with rotation and translation. To study the effects of abrasion on the surface of a semiconductor and its chemical properties, researcher Yongguang Wang conducted a series of experiments in three different environments: a vacuum chamber, a microfluidic chamber and an electrochemical chamber. [Sources: 2, 6, 9]

To level a shallow trench, a common method should be used, using a polyurethane polishing cushion with a depth of 1.5 micrometers (0.1 mm) at the base. [Sources: 7]

Wafer polishing is a process for refining silicon discs that is used to create a thin layer of silicon on a wafer, as in the case of semiconductors. Poly-silicon planarization can also be used to thin wafers and produce high-performance silicon chips. [Sources: 3, 5]